
CTRL+A # move to beginning of line

CTRL+C # halts the current command

CTRL+E # moves to end of line

CTRL+K # deletes (kill) forward to end of line

CTRL+L # clears screen and redisplay the line

CTRL+N # next line in command history

CTRL+P # previous line in command history

exit # logs out of current session

env # all environment variables

echo $SHELL # the shell you're using

echo $BASH_VERSION # bash version

bash # use bash

whereis bash # where bash is on your system

which bash # which program is executed as 'bash‘ (default: /bin/bash)

clear # clears content on window

mkdir <dirname> # makes a new directory

cd # changes to home

cd <dirname> # changes directory

pwd # current directory

#IF

if condition

then

statements

[elif condition

then statements...]

[else

statements]

fi

#FOR LOOP

for x in {1..10}

do

statements

Done

for name [in list]

do

statements that can use $name

done

for ((initialisation ; ending condition ; update))

do

statements...

done

#WHILE

while condition; do

statements

done

until condition; do

statements

done

ls # lists your files in current directory

ls <dir> # lists of files in a specific directory

ls -l # lists your files in 'long format‘ (e.g. file size, modified date)

ls -a # lists all files, including hidden files

ln -s <filename> <link> # creates symbolic link to file

cat <filename> # prints file raw content (will not be interpreted)

more <filename> # shows the first part of a file (move with space, q to quit)

head <filename> # outputs the first lines of file (default: 10 lines)

tail <filename> # outputs the last lines of file (default: 10 lines)

mv <filename1> <destination> # moves a file to destination

cp <filename1> <destination> # copies a file

rm <filename> # removes a file

diff <filename1> <filename2> # compares files, and shows where they differ

wc <filename> # number of lines, words and characters in a file

chmod -options <filename> # change the read, write, and execute permissions on file

gzip <filename> # compresses files using gzip algorithm

gunzip <filename> # uncompresses files compressed by gzip

gzcat <filename> # look at gzipped file without gunzip it

grep <pattern> <filenames> # looks for the string in the files

grep -r <pattern> <dir> # search recursively for pattern in directory

SHORTCUTS BASH BASICS

DIRECTORY COMMANDS FILE COMMANDS

CONDITIONAL STATEMENTS

BASH CHEAT-SHEET

Find more: https://github.com/LeCoupa/awesome-cheatsheets/blob/master/languages/bash.sh

https://github.com/LeCoupa/awesome-cheatsheets/blob/master/languages/bash.sh

statement1 && statement2 # and operator

statement1 || statement2 # or operator

-a # and operator inside a test conditional expression

-o # or operator inside a test conditional expression

BASH CHEAT-SHEET

STRINGS

str1 = str2 # str1 matches str2

str1 != str2 # str1 does not match str2

str1 < str2 # str1 is less than str2 (alphabetically)

str1 > str2 # str1 is greater than str2 (alphabetically)

-n str1 # str1 is not null (has length greater than 0)

-z str1 # str1 is null (has length 0)

FILES

-a file # file exists

-d file # file exists and is a directory

-e file # file exists; same -a

-f file # file exists and is a regular file

-r file # you have read permission

-s file # file exists and is not empty

-N file # file was modified since it was last read

-O file # you own file

-G file # file's group ID matches yours

file1 -nt file2 # file1 is newer than file2

file1 -ot file2 # file1 is older than file2

NUMBERS

-lt # less than

-le # less than or equal

-eq # equal

-ge # greater than or equal

-gt # greater than

-ne # not equal

FLOW CONTROLS

cmd1|cmd2 # pipe; takes standard output of cmd1 as standard input to cmd2

< file # takes standard input from file

> file # directs standard output to file

>> file # directs standard output to file; append to existed file

<> file # uses file as both standard input and standard output

n<>file # uses file as both input and output for file descriptor n

n>file # directs file descriptor n to file

n<file # takes file descriptor n from file

n>>file # directs file n to file; append to already existed file

n>& # duplicates standard output to file descriptor n

n<& # duplicates standard input from file descriptor n

n>&m # file n is made to be a copy of the output file descriptor

n<&m # file n is made to be a copy of the input file descriptor

&>file # directs standard output and standard error to file

<&- # closes the standard input

>&- # closes the standard output

n>&- # closes the ouput from file descriptor n

n<&- # closes the input from file descripor n

INPUT/OUTPUT REDIRECTORS

varname=value # defines a variable

echo $varname # display variable's value

export VARNAME=value # defines an environment variable

${#varname} # returns the length of the value of variable

$(UNIX command) # command substitution

VARIABLES

